Carbon monoxide and iron modulate plasmatic coagulation in Alzheimer's disease.
نویسندگان
چکیده
Alzheimer's disease (AD) is a significant source of morbidity and mortality for millions of people worldwide, and multiple potential etiologies have been postulated to contribute to AD. Among these, spontaneous cerebral emboli and increased cerebral and circulating heme oxygenase (Hmox) activity in AD patients are of particular interest, as two of the products of Hmox activity, carbon monoxide (CO) and iron enhance plasmatic coagulation and modify the ultrastructure of thrombi. We hypothesized that patients afflicted with AD would have coagulation kinetics modulated by CO and iron. Using viscoelastic assessments of coagulation, it was determined with a small cohort (n=11) of AD patients that all had enhancement of coagulation by CO, iron, or both. In a complementary fashion, it was determined that a separate cohort (n=12) of AD patients had thrombi with ultrastructural features consistent with iron and CO exposure as assessed with scanning electron microscopy. Further, when stratified by normal or abnormally increased serum ferritin concentrations (which can be increased by Hmox), the AD patients with abnormal ferritin concentrations had significantly thinner fibrin fiber diameters, not unlike that noted when normal plasma is mixed with iron or CO. In sum, AD patients were noted to have plasmatic coagulation kinetic and thrombus ultrastructural changes consistent with exposure to CO and iron. Future investigation of CO and iron in the pathogenesis of Alzheimer's disease is warranted.
منابع مشابه
Carbon monoxide attenuates the effects of snake venoms containing metalloproteinases with fibrinogenase or thrombin-like activity on plasmatic coagulation†
Exposure of plasma to iron and carbon monoxide (CO) renders fibrinogen resistant to fibrinogenolytic or thrombin-like activity contained in pit viper venom. However, the direct effects of iron/CO on venom activity are unknown. Thus, we assessed if four different, metalloproteinase containing snake venoms exposed to iron/CO or CO alone could attenuate their fibrinogenolytic or thrombin-like acti...
متن کاملIron and carbon monoxide enhance coagulation and attenuate fibrinolysis by different mechanisms.
Two parallel lines of investigation elucidating novel mechanisms by which iron (scanning electron microscopy-based) and carbon monoxide (viscoelastic-based) enhance coagulation and diminish fibrinolysis have emerged over the past few years. However, a multimodal approach to ascertain the effects of iron and carbon monoxide remained to be performed. Such investigation could be important, as iron...
متن کاملBilirubin does not modulate ionotropic glutamate receptors or glutamate transporters.
Bilirubin, a product of haemoglobin metabolism, has been suggested to damage neurons by increasing activation of N-methyl-D-aspartate (NMDA) receptors when it reaches high levels in the blood [15,19], as occurs in neonatal jaundice [7]. Bilirubin is also generated in the brain following synthesis of the messenger carbon monoxide (CO) by haem oxygenase, and haem oxygenase is upregulated in Alzhe...
متن کاملThe Adverse Effects of Nicotine and Carbon Monoxide on Cardiovascular Disease
Cigarette smoking causes injury of coronary arteries as well as other arteries. Sudden death is more frequent in heavy smokers than in non smokers. Studies showed that dangerous arrhythmias will be the result of effect of nicotine when injected in the animals. Carbon-monooxide is also dangerous for man when it is produced by smoking. The prevention of heart disease will be more satisfactory ...
متن کاملA Heme Oxygenase-1 Transducer Model of Degenerative and Developmental Brain Disorders
Heme oxygenase-1 (HO-1) is a 32 kDa protein which catalyzes the breakdown of heme to free iron, carbon monoxide and biliverdin. The Hmox1 promoter contains numerous consensus sequences that render the gene exquisitely sensitive to induction by diverse pro-oxidant and inflammatory stimuli. In "stressed" astroglia, HO-1 hyperactivity promotes mitochondrial iron sequestration and macroautophagy an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current neurovascular research
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2015